

Nature Based Solutions (NbS) for Climate Resilient Coastal Landscapes in Terschelling

Valentina Uribe Jaramillo^{1 3}, Perry de Louw ^{1 2}, Arjen Luijendijk ^{1 3} ¹ Deltares, Delft. ² Wageningen University, Wageningen. ³ Delft University of Technology, Delft.

1. Background

- Climate Change increases the **frequency and intensity** of storm surges.
- Coastal landscapes are vulnerable to **flooding and erosion**.
- Changes in morphology generate pressure on coastal groundwater systems.

Objective: Evaluate the efficiency of NbS in enhancing climate resilience in coastal ecosystems. The assessment will consider the interactions between coastal surface processes and subsurface groundwater dynamics.

3. Coastal – Groundwater Interactions

- Coastal erosion and sea level rise can increase salinization risk
- Dunes play a key role as **buffers for freshwater availability**
- Solutions in the coast can also affect the groundwaters system's resilience
- Systems interactions are key to implement solutions for climate resilience

2. Achieving Climate Resilience

What priorities (challenges and objectives) do stakeholders identify as crucial for achieving climate resilience in the study area?

- Freshwater auto-sufficiency
- Adapting to drier summers and wetter winters

4. Climate Today (2025)

5. Climate in the Future (2100)

6. Nature Based Solutions

7. NBRACER

